
This month, Dave concludes
his look at how to create DLLs
using Delphi and, in the
process, shows us how to
invoke Delphi forms from
other applications.

In Part 1 of this two-part look at
Delphi DLL programming (back

in Issue 1), we examined the basics
of DLL programming using Object
Pascal. We saw how to build a DLL
and how to export routines from
the DLL so they could be called
from an application written in C,
C++, Pascal or even Visual Basic.

That was OK was far as it went,
but this month we’re going to look
at the more exciting stuff: how to
actually package up a Delphi user
interface into a DLL so that it can
be called from another application.

This is very relevant to develop-
ers who already have a major
investment in another language.
For example, I recently had an
enquiry from a scientific user who
has a large application written in
FORTRAN. He wants to keep his
existing back-end number crunch-
ing code and port the user inter-
face side of his application across
to Delphi. A DLL implementation is
ideal for this sort of approach.

The Date Selection Dialog
Let’s get straight down to brass
tacks then, and put together a
simple DLL. For the purposes of
this discussion, we’ll build a DLL
which implements the dialog box
shown in Figure 1.

Although this is the only dialog
box we’re going to be discussing, it
needs to be said that if you’re using
the DLL approach it’s a good idea
to package many dialog boxes into
the same DLL. Any VCL dialog pulls
in a minimum of 100–150Kb of VCL
code and it makes no sense to rep-
licate this overhead across several
DLLs. Don’t adopt a one-dialog-per-

DLL approach unless you have
very good reasons for doing so!

As you can see from the screen
shot, our sample dialog box
implements a simple date selection
mechanism. A TCalendar compo-
nent (taken from the Samples page
of the Delphi component palette) is
used in conjunction with three
BitBtn controls. The user can
select a date and click the OK button
or else double-click directly on the
date, which will automatically dis-
miss the dialog. Clicking Cancel will
likewise dismiss the dialog with no
selection being made and the Help
button does what you’d expect.

In a real world application, you’d
most likely need something more
sophisticated, but these are issues
that we’re not going to concern
ourselves with here – our mission
is to package the dialog into a DLL
and show how to access it.

Planning Your DLL Interface
Examining the Select Date dialog
box, we can see that we need to
provide the following information
as input to the DLL:
➣ A Caption String for the form

itself (so we can display applica-
tion-specific strings such as
“Select Next Appointment” etc);

➣ The Name of a Windows Help
file and help context number for
when the Help key is clicked.
This information should not be
hard-wired into the DLL. A DLL
must be as general-purpose as
possible.

As for as getting information out of
the DLL, we need to know:
➣ If the user selected a date

(clicking OK or double- clicking a
date) or clicked Cancel;

➣ If a date was selected, we need
to know what it was; after all,
that’s the whole raison d’être of
this dialog box!

If we were implementing this dialog
as a reusable Delphi component,
we’d just create properties that
correspond to the various inputs
and outputs of the dialog box. For
example, we might have a property
called HelpContext which stores the
help context that’s invoked when
the Help button is clicked.

However, we can’t use that
approach here – one of the most
crucial things to bear in mind about
a DLL interface is that it’s strictly
procedural. We can’t make any
object-oriented calls from the
outside world to the DLL. You
might wonder why this is so. The
reason is that object-oriented

Delphi Internals:
Through The Language Barrier
by Dave Jewell

➤ Here’s our fresh-faced Delphi dialog box. Little does it know that it’s
about to be transmogrified into a DLL and called from Pascal, C and
even – horrors – Visual Basic!

September 1995 The Delphi Magazine 39

languages (both C++ and Object
Pascal) always have rather more
going on behind the scenes than
meets the eye! For example, most
VCL components (including forms
themselves) have a Hide method.
When you call this method, it
appears as though it has no
parameters:

MyForm.Hide; { Hide our form }

However, every method of an
object has an implicit parameter,
Self, which is a pointer to the
instance data of the object being
referenced. Thus, the Hide method
actually takes a hidden object
pointer as its single parameter.
That pointer, which references a
dynamically allocated VCL object,
is completely meaningless to a C++
application. For just the same
reason, calling a C++ method from
Delphi code is a decidedly non-
trivial exercise (even C++ compil-
ers from different vendors aren’t
compatible in this respect!). It’s for
this reason that we must stick to a
strictly procedural interface.

In the end, I came up with the
following three interface routines
which constitute our DLL interface
to the outside world:

procedure DateSelSetCaption(
 Caption: PChar); export;
procedure DateSelSetHelpInfo(
 HelpFile: PChar;
 HelpContext: LongInt);
 export;
function DateSelDialog(
 var TheDate: Integer): Bool;
 export;

The first, DateSelSetCaption, is
used to set an optional, custom
caption string for the form. If this
routine is never called, then the
form’s caption remains set to “Se-
lect Date”, which is how I set the
Caption property in Delphi’s form
designer. The second routine,
DateSelSetHelpInfo, is used to set
up the name of the Windows help
file and a help context number.
These values are used when the
user clicks the Help button. If this
routine is never called, then the
Help button is greyed out and
unavailable.

The third routine, DateSelDialog,
is the real “business end” of the
DLL. It’s responsible for invoking
the form and getting user input.
When the caller returns from this
routine, the form will already have
been closed. A return value of True
indicates that a selection was made
and False indicates that the user
clicked Cancel. When DateSelDialog
is called, an integer variable is
passed as a var parameter to the
routine and its value will be set to
the selected day of the month.

A couple of things to note.
Firstly, all three DLL interface
routines use the special export
specifier. I discussed the use of this
keyword last time. Suffice it to say
that you must be sure to use the
export keyword when declaring
any routines that are going to be
exported from the DLL. The second
thing to note is the use of the PChar
variable type when passing strings
into (and potentially out of) the
DLL. It should go without saying
that when creating an interface
between the Delphi DLL and the
host program, you must only use
data types which are compatible
with both programming languages.
Thus, you can’t pass Pascal strings
through a DLL interface to a C or
C++ program. Similarly, you can’t
use Pascal sets as part of the DLL
interface. Sets are a foreign
concept to C/C++ compilers!

Before we move on, here’s one
further point. I’ve implemented our
DLL interface using three separate
routines, but you could pass all this
information using just one routine
with lots of parameters. However,
I’d caution you against this: it’s
unwieldy and error prone. My own
philosophy is to provide a simple
interface which implements essen-
tial functionality (DateSelDialog, in
this case) and then provide other
routines to extend that functional-
ity where required. The infamous
GetPrivateProfileString Windows
API routine is a good example to
dwell upon! As ever, the KISS adage
(Keep It Simple, Stupid!) applies...

Inside The DLL Source
The source code to the form unit is
shown in Listing 1. As you can see,
the beginning of the unit is quite

conventional with the class defini-
tion of TDateSelector as produced
by the Delphi form designer. This
is immediately followed by proce-
dure declarations for the three ex-
ported routines that we just
examined.

Four constants are defined in the
implementation part of the unit.
These constants, (used to store the
caption, help information and
selected date), are used by the
code that follows. Bear in mind that
you’d normally store this sort of
form-specific information as prop-
erties of the form but this can’t be
done here because we need to
access these variables from the
procedural (non-OOP, non-VCL
aware!) exported routines.

The FormCreate handler is very
straightforward. It looks to see if a
custom caption has been set up
and, if so, sets the form’s caption to
the new custom caption string. It
also checks to see if there’s a valid
help file name and help context. If
there isn’t, then the Help button is
disabled. As an alternative, you
could arrange for the Help button
to disappear altogether by calling
its Hide method. This would
probably be a neater approach.

The OKButtonClick handler is
equally straightforward. I’ve set
this up as a shared event handler
so that it’s called by both the OK and
Cancel buttons. It’s also used as the
OnDblClick handler of the TCalendar
component, so that a double-click
on a date closes the dialog. Alterna-
tively, you could implement the
button-clicking functionality using
the ModalResult mechanism. If
anything other than the Cancel
button is clicked, the iDate variable
is set to the currently selected date
in the Calendar control.

The next event handler,
HelpButtonClick, merely calls the
Windows Help engine with the help
information that’s been obtained
from the host application via a call
to DateSelSetHelpInfo. It should be
obvious that this handler will only
get called if the help button is
enabled which in turn means that
there must have been a call to
DateSelSetHelpInfo, so we don’t
bother to include another check
here. The help file name which is

40 The Delphi Magazine Issue 3

passed to the DLL can be a fully
qualified pathname if you wish.

The three exported interface
routines come next in the listing.
DateSelSetCaption simply uses the
StrPas routine to copy the zero-
terminated caption string into a
Pascal-style string. It’s a good idea
to check for a NIL argument here
since StrPas doesn’t bother and a
GPF will result if the host
application passes a NIL value. The
DateSelSetHelpInfo code uses
StrNew to store the passed help file
name. This allows us to store an
arbitrarily long pathname, but it is
important to dispose of any prior
allocated file name in case we get
called more than once.

Finally, the DateSelDialog
routine is where the rubber meets
the road! The routine first initial-
ises iDate (again, this is in case we
get called more than once) and
then creates an instance of the
TDateSelector form. The ShowModal
method is called to actually display
and process the form’s user inter-

unit Dateform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, Grids, Calendar,
 StdCtrls, Buttons;
type
 TDateSelector = class(TForm)
 Calendar1: TCalendar;
 OKButton: TBitBtn;
 CancelButton: TBitBtn;
 HelpButton: TBitBtn;
 Label1: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure OKButtonClick(Sender: TObject);
 procedure HelpButtonClick(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 end;

procedure DateSelSetCaption(Caption: PChar); export;
procedure DateSelSetHelpInfo(HelpFile: PChar;
 HelpContext: LongInt); export;
function DateSelDialog (var TheDate: Integer):
 Bool; export;

var DateSelector: TDateSelector;

implementation
{$R *.DFM}
const
 CustomCaption: String = ’’;
 HelpFileName: PChar = Nil;
 dwHelpContext: LongInt = -1;
 iDate: Integer = 0;

procedure TDateSelector.FormCreate(Sender: TObject);
begin
 { Set custom caption if one has been supplied }
 if CustomCaption ’’ then Caption := CustomCaption;
 { If Help stuff not set up disable Help button }
 if (HelpFileName = Nil) or (dwHelpContext = -1) then
 HelpButton.Enabled := False;
end;

procedure TDateSelector.OKButtonClick(Sender: TObject);
begin
 { If this wasn’t a Cancel, set the iDate global }
 if Sender CancelButton then iDate := Calendar1.Day;
 Close;
end;

procedure TDateSelector.HelpButtonClick(Sender: TObject);
begin
 { Call the Help Engine with the info we’ve been given }
 WinHelp (Handle, HelpFileName, Help_Context,
 dwHelpContext);
end;

procedure DateSelSetCaption (Caption: PChar);
begin
 { StrPas doesn’t check for Nil strings, so watch it! }
 if Caption Nil then CustomCaption := StrPas (Caption);
end;

procedure DateSelSetHelpInfo (HelpFile: PChar;
 HelpContext: LongInt);
begin
 { If we’ve previously been called, clear old string }
 if HelpFileName Nil then StrDispose (HelpFileName);
 { Now set up the new stuff }
 HelpFileName := StrNew (HelpFile);
 dwHelpContext := HelpContext;
end;

function DateSelDialog (var TheDate: Integer): Bool;
begin
 iDate := 0; { no date selected yet }
 { Create the form instance }
 DateSelector := TDateSelector.Create (Application);
 try
 DateSelector.ShowModal; { Display the dialog }
 finally
 DateSelector.Free; { Destroy the form instance }
 Result := iDate 0;
 if Result then TheDate := iDate;
 end;
end;
end.

➤ Listing 1

actions and the finally clause
ensures that the dialog is cleaned
up no matter what befalls. The
function result is set to True or
False according to whether or not
a valid date was set up and if so its
value is passed back to the caller
as a var parameter.

The code in Listing 2 is the
corresponding Delphi Project
(.DPR) file. Delphi has no built-in
expert for creating DLLs [But now
you have, of course, courtesy of Bob
Swart’s article on page 35! Editor].
There are four simple steps in the
process as outlined in the Borland
documentation:
➣ Change the initial keyword

program to library.
➣ Remove Forms from the uses

clause of the file.
➣ Remove everything between

the begin and end statements.
➣ Add an exports entry for each

exported function.
As you can see in the listing, I have
added exports entries for the three
routines that constitute our DLL

interface. I’ve also given them
ordinal numbers, although this is
optional if you’re happy to import
by name (see Part 1 of this article
for a fuller discussion of this).

Making It All Happen
The proof of a DLL, of course, is in
the calling! At this point, I had a
226Kb file, DATESEL.DLL, and I
needed some way of testing it. To
do this, I knocked up a couple of
small host applications, one in
Pascal and one in C. These are
shown in Listings 3 and 4. It’s worth
pointing out that the Pascal host
application is a prodigious 1536
bytes in size: a definite case of the
tail wagging the dog!

The results of running these two
small host applications are shown
in Figures 2 and 3. As you can see,
it all works as advertised. I didn’t
bother knocking up a Visual Basic
application to prove the point, but
I’m confident that it would also
work equally well. There are a num-
ber of improvements that suggest

September 1995 The Delphi Magazine 41

themselves for our sample dialog.
Perhaps the most necessary
improvement (and certainly the
biggest shortcoming of the code
presented here) is the thorny issue
of multiple users. As soon as you
package up code into a DLL, this is
an issue that you really need to
think about. At the moment, our
sample dialog wouldn’t work
correctly if used simultaneously by
more than one application since
those const variables in the form
unit are effectively global
variables. If you need to create a
dialog that’s going to be used by
multiple callers, I’d suggest that
you package up all this state
variable information into a dynami-
cally allocated block of memory. A
handle to this memory block is
then passed around between the
host application and the DLL and
allows the DLL to retrieve and set
all state information pertaining to
the current call. This isn’t difficult
to implement and since my brief
was to explain how to package up
Delphi forms into DLLs rather than
covering DLL programming in
general, I feel absolutely no guilt in
leaving this as an exercise for you!

Dave Jewell is a freelance consult-
ant and programmer, specialising
in systems-level work under
Windows and DOS. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

program DateProg;
uses WinProcs, WinTypes;
procedure DateSelSetCaption (Caption: PChar);
 far; external ’DATESEL’ index 1;
procedure DateSelSetHelpInfo (HelpFile: PChar; HelpContext: LongInt);
 far; external ’DATESEL’ index 2;
function DateSelDialog (var TheDate: Integer): Bool;
 far; external ’DATESEL’ index 3;
var i: Integer;
 buff: array [0..127] of Char;
begin
 DateSelSetCaption (’Calling Delphi from Vanilla Pascal’);
 lstrcpy (buff, ’You made no choice’);
 if DateSelDialog (i) then wvsprintf (buff, ’You chose %d !’, i);
 MessageBox (0, buff, ’Pascal Caller’, mb_ok);
end.

➤ Listing 3

library Datesel;
uses Dateform in ’DATEFORM.PAS’ {DateSelector};
{$R *.RES}
exports
 DateSelSetCaption index 1,
 DateSelSetHelpInfo index 2,
 DateSelDialog index 3;
begin
end.

➤ Listing 2

#include <windows.h>
#ifdef __cplusplus
extern “C” {
#endif
void WINAPI DateSelSetCaption (LPCSTR lpCaption);
void WINAPI DateSelSetHelpInfo (LPCSTR HelpFile, DWORD HelpContext);
BOOL WINAPI DateSelDialog (LPINT TheDate);
#ifdef __cplusplus
}
#endif
int i;
char buff [128];
int PASCAL WinMain (HINSTANCE hInst, HINSTANCE hPrev,

 LPSTR lpCmdLine, int nCmdShow)
{
 DateSelSetCaption (“Calling Delphi from Vanilla C”);
 lstrcpy (buff, “You made no choice”);
 if (DateSelDialog (&i)) wvsprintf (buff, “You chose %d !”, &i);
 MessageBox (0, buff, “C Language Caller”, MB_OK);
 return (0);
}

➤ Figure 3
And here’s the
same dialog
again, being
called from a
C application

➤ Figure 2
Calling the DLL
from Borland
Pascal 7; you’ll
notice the help
button is greyed:
I didn’t bother
to set up help
information

➤ Listing 4

42 The Delphi Magazine Issue 3

	The Date Selection Dialog
	Planning your DLL Interface
	Inside the DLL Source
	Making it all Happen

